Heuristic Pre-clustering Relevance Feedback in Region-Based Image Retrieval

نویسندگان

  • Wan-Ting Su
  • Wen-Sheng Chu
  • Jenn-Jier James Lien
چکیده

Relevance feedback (RF) and region-based image retrieval (RBIR) are two widely used methods to enhance the performance of contentbased image retrieval (CBIR) systems. In this paper, these two methods are combined. And a region weighting scheme reflecting the process of human visual perception is also proposed to enhance the weighting importance assigned to the region whose pixels are closer to the attention center. Furthermore, rather than using a single positive feedback group, the proposed approach introduces RBIR to the relevance feedback with multiple positive and negative groups. To guide users in grouping the positive feedbacks, the proposed system provides a heuristic pre-clustering result automatically. Using these guiding clusters, the users can re-group the positive feedbacks to express his/her particular interests. Finally, Group Biased Discriminant Analysis (GBDA) is modified and applied to the similarity measure between images constructed on the basis of the regionbased relevance feedbacks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

An Image Clustering and Feedback-based Retrieval Framework

Most existing object-based image retrieval systems are based on single object matching, with its main limitation being that one individual image region (object) can hardly represent the user’s retrieval target, especially when more than one object of interest is involved in the retrieval. Integrated Region Matching (IRM) has been used to improve the retrieval accuracy by evaluating the overall ...

متن کامل

Region-based relevance feedback in image retrieval

Relevance feedback and region-based representation of images are two effective ways to improve accuracy in content-based image retrieval. In this paper, we propose a novel relevance feedback approach based on region representation. It can be considered as a special case of the query point movement method in region-based image retrieval. By assembling all the segmented regions of positive exampl...

متن کامل

Building a Compact Relevant Sample Coverage for Relevance Feedback in Content-Based Image Retrieval

Conventional approaches to relevance feedback in contentbased image retrieval are based on the assumption that relevant images are physically close to the query image, or the query regions can be identified by a set of clustering centers. However, semantically related images are often scattered across the visual space. It is not always reliable that the refined query point or the clustering cen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006